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I. INTRODUCTION

Most problems of electromagnetic theory can be formulated in terms

of an operator equation

Ax = y, (I)

where in general A is an integro-differential operator and x is the

unknown to be obtained for the particular excitation y.

The approximate methods of solving integro-differential equations

of electromagnetics are varied in respect to the ideas lying at their

foundation. A number of methods (Variational method, Rayleigh-Ritz

method, Galerkin's method, method of moments, method of least squares,

and so on) has been elaborated. At the same time the analysis of

these methods, particularly in electromagnetic theory, has not advanced

far. Most methods have remained without any theoretical analysis

and have only been verified by their effectiveness in individual

examples.

As is generally known, the majority of the linear problems of

analysis may be reduced to the problem of the extremem of quadratic

functionals. This fact may be utilized on the one hand for different

theoretical investigations relating to these problems (theorems of the

existence of a solution, properties of the eigenvalues and so on). On

the other hand it serves as a basis for direct methods for solving

the problems named.

In this paper a certain method of successive approximations - the

method of steepest descent - for the solution of problems concerning the

minimum for quadratic functionals and of the linear problems connected

with them is elaborated.
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The idea of this method goes back to Cauchy, who proposed it

in 1895 for the solution of the problems of the minimum of a function

of N variables, and a problem similar to that: the solution of a system

of N algebraic equations in N unknowns. Other attempts at developing

the ideas of Cauchy have been made in the works of Temple [I],

Courant [2] and Kantorovich [31 who provided the mathematical foundation

of the method of steepest descent.

The principle distinction between the method of steepest descent

and the method of Rayleigh-Ritz, Galerkin's,and the method of least

squares is that the sequence of approximations is not obtained in a

form selected a priori, but in a form determined by the problem itself.

From the Neumann series or the Picard's method of successive approxi-

mations [4] this method is distinguished by the size of the region of

convergence - which in a number of important cases coincides with the

region of existence of the solution - as well as by the nonlinear

character of the dependence of successive approximations.

During the theoretical investigation of every approximate method,

the following three problems generally arise, in the order of increasing

accuracy and difficulty:

(a) The establishment of convergence.

(b) The investigation of the rapidity of convergence.

(c) An effective estimate of error.

The solution of these problems is quite complex and demands a special

individual approach in each instance.

In this paper we present the mathematical foundation of the method

of steepest descent and apply it to the solution of electrostatic

field problems. It is noted that this method requires considerably

less computer storage than the method of moment formulation using



3

subdomain expansion and testing [11]. Since the method is iterative a

good guess may considerably reduce the computation time.

Since electrostatic problems represent the static limit (frequency

approaches zero) of the corresponding electromagnetic problems, the

problems treated in this paper therefore represent the first step towards

the development of this iterative technique for the electrodynamic case.

2. THE ME1HOD OF STEEPEST DESCENT

We start the description of this method by defining a quadratic

functional 1(x) in a linear normed space. The functional 1(x) is

defined by

I(x) = <r,Sr>, (2)

where the inner product is defined as

<C,D> = fC(x)T(x)dx. (3)
x

In (3) 6(x) denotes the complex conjugate of D(x) and the norm of

C is given by

c 2 = <cc> =1iC2 (x) ldx. (4)

In (2) S is a hermitian positive definite operator and

r = Ax-y (5)

By a quadratic we mean a functional 1(x) such that the expression

I(x+ap) is a polynomial of second degree in a, whatever elements x and

p may be. In seeking the minimun of the quadratic functional I(x+ap)

we use an arbitrary element x0 as an initial approximation and the

direction of the gradient at the point x0 is given by

d- [I(x0+ap)] = [<r,Sr>+<aSAp,r>+<Sr,oAp>+<aSAp,aAp>]. (6)

We select a normed element p=P 0 , so that the derivative In (6) for

a O will be a maximum. Since (x0+ap) is a polynomia' of second degree

in a, for a certain a-a0 , it will attain a minimum value. The element

xI-x 0 -aOp 0 we adopt as the next approximation, in turn, after which the
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Iteration becomes

Xn+ 1 = Xn-axpn• (7)

So from the starting point x , the approximation proceeds In the

direction p for a distance a n along the surface (xn ), attempting to

choose an and pn at each step so as to approach the minimum point of

1(x). The best choice of pn would of course be In the direction of the

error vector xe-x, but this vector is unfortunately not kiown. Here xe e

is the exact solution. In the next section it is shown how to select

p for the various functionals I(x) that are associated with the method

of steepest descent.

Next we compute the optimum step length a in the direction of p such

that the quadratic functional I(x+ap) is minimized. This implies that in (6)

d [I(X+ap = 0 (8)

resulting in

a <rSAp> 
(9)<Ap,SAp>

In the next section, for various search directions p, the optimum values

of a are given.

The process under discussion may be interpreted geometrically. First

let the space in which the functional r(x) is defined be two dimensional.

The contour lines 1(x) are, in general, a family of similar ellipses

with center at the minimum point. The point xO, with which we began the

process, lies in a certain ellipse of the family, viz. on I(x)=1(x ). From
0

It we go in the direction of the gradient, i.e. along the normal to this

ellipse, to a point corresponding to the least value 1(x) on this normal,

i.e. to the point x1 , where It touches (is tangent to) some ellipse of the

family. From this point we go along the normal to the ellipse I(x)-I(x,)

and so forth. If the number of dimensions of the space be more than two, in plac



a family of ellipses there is a family of ellipsoids, and instead

of the contour there are surfaces. However, each step of the process

may be examined In a plane, viz., the plane that passes through the

minimum point and the points x0 and x1. The sections of the ellipsoids

by the plane will be families of ellipses resembling the two dimensional

case.

3. DEVELOPMENT OF THE METHOD OF STEEPEST DESCENT

Several different functionals are available as error measures to be

used in conjunction with the method of steepest descent. The three

most popular functionals are described along with the corresponding

versions of the method of steepest descent. We also note the limitations

associated with each of the functionals. In the development of this

section we assume Ax=O in (1) has only the zero solution. This

restriction is relaxed in the next section, however.

(a) Minimization in the domain of A

In this case, the functional is chosen as

1 (a) - <x-x , x-x >
a e e

= <A- (Ax-y), A- (Ax-y)> = <A- r,A- r>

= <r,[A-I ]*[A- Ilr>, (10)

where

x = exact solutione

r - Ax-y

S = [A- 1 ]*[A - ]a

[A]* = adjoint of [A] (11)

For this functional, at each iteration the error between the approximate

solution x at the end of n iterations and the exact solution x isn e

made smaller than the error between xnI -X e . The convergence is

monotonic as proved in the next section. However, the residuals may
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oscillate. This implies that there is no guarantee whatsoever that

IjAx n-Yll = Ilrn i  > I{rn+ I  IlAxn+I-yll for all n. (12)

The method of steepest descent for the functional I Wx is
a

described below. The directions pn are chosen as

p n = A*rn (13)

So from (7) and (13), a is given bynI

<r nS a APn>

n <APn,SaApn>

<r nr > [utilizing(11)3

<A*r ,A*rn >

- Ilrnll2 (14)

and the iteration is given by

I1 1 2

xn+ 1 =x n -iA nil 2 A*rn
n~l n A*r ni n

I nY] A*[Axn-y] (15)

n IIA*[AxnyII2

It is important that if y V R(A) the iteration defined by (15) does not

converge at all. Here R(A) is defined as the range space of A.

(b) Minimization in the range of A

For this case

Ib(X) = <r,r> - <Ax-y, Ax-y> (16)

which implies

Sb = Identity operator. (17)

However, there are two versions of this particular method of steepest

descent depending on the choice of Pn" The choice of Pn for this case

depends also on the operator A.

L= } " . . . . . .I i - l .. . . . . . . l l
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(i) If A is positive/negative definite, then we choose

Pn = r n. (18)

From (7) and (18) a is given by

<r nAr n> (19)

n

n <Ar ,Ar >
n n (9

and the iteration for this special operator is defined by

<r ,Ar >
- n n

Xn+1 ' n <Ar ,Ar > rn
n nl

<Ax -y,A [AXn-Y]>

x n  < - Ax nY T n [Axn-Y]. (20)
SIA (Ax -y)I ZH

(ii) If A is an arbitrary operator, we choose

Pn = A*rn [same as in (13)]

For this particular choice of pn' and utilizing (17) we get

<r ,AA*r n> IIA*rnII2a= =(}
n <AA*rn ,AA*r > IAArn2 (21)

The method of steepest descent is then described by the iteration

IIA*rnil2
x = x - A*rn+l n IiAA* rnil2 n

I A*[AXn-Y] I 2

= X n  IIAA[AXnY]2 2 A*[Ax n-Y]. (22)

HlAA*[Ax n- n1

It is important to roint out that for both (i) and (ii) the

residuals decrease monotonically at each iteration. However, there

is no guarantee for an arbitrary operator A that the corresponding

errors in the solutions x would be small. In other words then

following inequality is not satisfied:

Ilxn-xelI > Ilxn+l-xel for all n. (23)
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The method of steepest descent described by (20) or (22) converges

to the exact solution if y e R(A). If y 4 R(A) then the iterations

described by (20) or (22) converge to a least squares solution with

the minimum norm. It is interesting to point out that the same

functional as described in (16) is also minimized in the application

of the method of least squares.

(c) Minimization both in domain and range of A.

In the method of steepest descent this choice of the functional

works only if A is positive/negative definite. The functional is

defined as

It(x) = <X-x eA(x-xe)>

= <A-Ir,r> = <r,[A I]*r> (24)

and therefore

S = [A-1 ]*. (25)

In this case we select the paths pn as

Pn = rn (same as in (18)].

Utilizing (7) and (18) we obtain

Th n= rr>= Ir 2(26)
n <r nAr n> <r nAr<rnrn> n >  "(6

The iterative method is then defined by
2

Xn+l = Xn <r ,Ar > rn
n nl

SI lAXn- 1l2

x <Ax n-Y,A[Ax Y]> AX -Y]. (27)
n <xn-YAA n -

The iterations defined by (27) converge to the exact solution if

and only if

(1) A is positive/negative definite, and

(2) y c R(A) (28)



If either of these two conditions is violated, the convergence of (27)

is not assured.

It is interesting to note that the same functional I (x) defined byC

(24) is minimized in the application of the variational - Rayleigh-Ritz

and Galerkin's methods. From the above discussion it thus becomes clear

that in Rayleigh-Ritz and Galerkin's methods there is no guarantee of

the convergence of the solutions as n- if either of the conditions

in (28) is violated. An example has been presented in the Appendix, to

illustrate the above phenomenon, when none of the conditions in (28)

are satisfied.

4. RATE OF CONVERGENCE OF THE METHOD OF STEEPEST DESCENT

The method of steepest descent utilizes the iterative process

Xn+ I = X n- npn .

In order to stop the iterative process, we make sure that the

residuals are below a certain small value, i.e.

Hrnlj = JJAxn-Y11 < E. (29)

In practice, we have found specifying this criterion is equivalent to

restricting

SIfan-n+iH < c. (30)

i.e, the values of an have settled to a stable numerical value.

Observe that for the iterative processes described by (20), (22), and

(27) the value of a has settled to the smallest eigenvalue of then

operator A in the finite dimensional space in which the problem is

being solved. For the iterative process in (15) Lt a yields the
n

smallest eigenvalue of the adjoint operator A* in the finite dimensional

space in which the problem is represented.

The next question that automatically rises is how fast do these an

converge, or xn's approach the true solution Xe, or the residuals rn

converge to zero. These questions are answered by the following theorems.
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Theorem 1: The sequence {x ln=O,l, 2 .... ) generated by (15) for
n

the functional Ia(x) , derived by the method of steepest descent satisfies

I, n X , x x < {( [All-IIA-I"0-It

n ell - f ll Il-jfA- 11'+I I "lixxell. (31)

The proof of this theorem can be found in [5-7]. The proof assumes that

y e R(A), otherwise (15) does not converge.

Theorem 2: The sequence {x } generated by (22) for the functional

Ib(x), derived by the method of steepest descent satisfies

lIxn-xel < lA-1ll 1 AI I{A-Ai}2 l .IIA*Ax°-A*yII" (32)

The proof of this theorem is given in [5-71.

The estimate (32) is valid even if y R(A). In that case A-1

should be interpreted as the generalized inverse of A.

Theorem 3: The sequence {xn} generated by (27) for the functional

Ic (x), derived by the method of steepest descent satisfies

lIXn-XeII < jlAll- A-I1 l, , .' o'' ell (33)
~IIAI .1IA I 1+11

The proof of this theorem can be obtained from [8].

Observe that out of the three estimates (31), (32) and (33), the

last one has the best rate of convergence. However, it is only

applicable to a certain restricted class of definite operators A.

(31) yields a better rate of convergence than (32). However, the

assumption is y E R(A) - which may be valid for a wide class of problems

of interest. However, if y e R(A), (31) no longer holds and the only

iterative technique that is available is (22). The rate of convergence

of {xN I for the iterative method in (22) is given by (32).
n
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Now if IIAlll is unbounded or if A- ' does not exist (when Ax-O

has a nontrivial solution) then the above three theorems cease to be

true entirely, just because the solution cannot exist or is not unique.

Under these circumstances, a weaker assertion holds and is given by

theorem 4.

Theorem 4: If Ax=O has a nontrivial solution, or if 11A 111

is unbounded, then each successive approximation is nearer to xe than

is the preceeding, i.e.

Hxn+ n-XeH 2< IhAll 2"c.lXo-XehI2  (4
_ 2 iAil2. Cnllxoxell 2  (34)

where C are certain constants which depend on x and y, and

2Q r , where Q is a constant. (35)

The proof of (34) is given in [9] and that of (35) in [3]. From (35)

it is seen that the numbers rn diminish, have a finite limit and by

passing to the limit in (27) one is easily convinced that the limit

is equal to zero. On this basis of inequality (35) it is seen that [31

r = 0(0/n) = [of the order of 1/n]

and hence the rate of convergence is of the order of 1/n, which is

explicitly given by (34).

5. NUMERICAL RESULTS

In this section, the method of steepest descent, described so far,

is applied to the solution of electrostatic problems. In this case the

operator A is real and self adjoint. Hence we have used the iterative -

method given by (27). The geometries considered here are a thin straight

wire and a 900 bent wire raised to a specified potential. The numerical

results are compared with the method of moment solution [10] and excellent
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agreement is obtained in each case. A considerable reduction in the

computer storage is also noted with the present method which makes it

especially attractive for large electromagnetic field problems. Since

the method is iterative, a good initial guess may significantly reduce

the computation time.

Straight Wire

In Table 1 we present the charge induced on a thin straight wire

of length l.Om and radius O.O0lm raised to a constant potential

1/47rc volts, where e° is the free space permittivity. The wire is

divided into nine equal subsections and charge is computed at the

center of the subsection. As is evident from the table, both solutions

show excellent agreement up to at least four decimal places.

The present solution with the method of steepest descent is

obtained by assuming a constant charge distribution as initial guess

and the method converged in 16 iterations. The smallest eigenvalue of

the integral operator was obtained as .10285 as a by-product.

We have also solved the problem of charge distribution on a 300.Om

long wire with Olm radius charged to 1/4neT0 volts. The methodO

converged in 29 iterations.

Bent Wire

In Table 2, we present the charge induced on a 900 bent wire raised

to a potential /47re0 volts. Each section of the wire is l.Om long0

and the radius is O.OOlm. The wire is divided into 20 unequal intervals

with more subsections in the vicinity of the bend. For comparison,

we present the solution obtained by the method of moments using pulse

expansion and point matching. In Table 2, the parameter I is measured

along the length of the wire with the bend at Z-0. Again both the
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TABLE I

Charge induced (coulombs/m)

I (meters) Method of Moments Method of Steepest
Descent

-0.444 0.94083 E-O1 0.94084 E-O1

-0.333 0.83065 E-01 0.83065 E-01

-0.222 0.80153 E-O! 0.80154 E-O

-0.111 0.78897 E-01 0.78897 E-01

0.0 0.78532 E-01 0.78532 E-01

0.111 0.78897 E-01 0.78897 E-01

0.222 0.80153 E-01 0.80154 E-01

0.333 0.83065 E-01 0.83065 E-01

0.444 0.94084 E-01 0.94084 E-01

TABLE 2

Charge Induced (Coulombs/m)

L (meters) Method of Moments Method of Steepest Descent

-0.930 0.89847267 E-01 0.89848161 E-01

-0.790 0.78931868 E-01 0.78932703 E-O!

-0.650 0.75660667 E-O1 0.75661421 E-01

-0.510 0.73936105 E-01 0.73936880 E-01

-0.370 0.73649168 E-O1 0.73649943 E-0)

-0.270 0.61391938 E-01 0.61392322 E-OI

-0.210 0.62429000 E-OI 0.62429097 E-01

-0.150 0.62455501 E-OI 0.62456008 E-01

-0.090 0.62318593 E-O 0.62318966 E-O

-0.030 0.62107146 E-01 0.62107623 E-01

0.030 0.62107511 E-01 0.62107649 E-01

0.090 0.62318355 E-O 0.62318619 E-O!

0.150 0.62455675 E-01 0.62455688 E-01

0.210 0.62428676 E-O 0.62428772 E-01

0.270 0.61391711 E-OI 0.61391935 E-Of

0.370 0.73648870 E-01 0.73649585 E-0l

0.570 0.73940277 E-01 0.73940575 E-01

0.650 0.75661004 E-Of 0.75661361 E-O

0.790 0.78932526 E-01 0.78932822 E-01

0.930 0.89945679 E-01 0.89846134 E-O

ILI
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solution procedures show remarkable agreement. Further note the

absence of any anomalies in the solution of the method of steepest

descent which indicates the capability of the solution procedure to

handle abrupt bends.

Again as a by-product we have obtained the smallest elgenvalue of

the operator, which is .099435. The smallest eigenvalue of the operator

is important as it may tell us how ill-conditioned the actual problem

is. If the smallest eigenvalue turns out to be extremely small then

we know that the homogeneous equation might have a nontrivial solution

and the corresponding method-of-moments formulation may yield inaccurate

results.

Presently work is being carried out on the extension of the method

of steepest descent to electromagnetic problems.

6. CONCLUSION

The method 6f steepest descent has been applied to solve

electrostatic problems. Explicit error formulas and the rate of

convergence of the method of steepest descent Is given. It is shown

that this method is also suitable for analyzing singular operator

equations which may arise in certain electromagnetic problems. In

this case the rate of convergence Is (1/n). The method yields as a

by-product the smallest elgenvalue of the operator in the finite

dimensional space in which the problem Is solved. Numerical results

for electrostatic problems show excellent agreement between the method

of moments formulation and the method of steepest descent. It is also

seen that this method requires considerably less storage than the

corresponding method of moments formulation with pulse functions

as expansion and Impulse functions as weighting. Since the method of

steepest descent is an Iterative method, a good Initial guess may

considerably reduce the computation time.
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methods without proper examination of the operator itself.
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As an example consider the solution of the equation -1 in the region
dz

O<z<l with x(z-O)=O The exact solution to this problem is Xexact z. Assume

that an approximate solution for z is sought as

a sin ---- (36)n 2
n-1,3,5,7,..

The functions sin nT-are orthogonal in the range O<z<l and form a complete

set. We can obtain an approximate solution of the above equation using

the concepts of Fourier series. In this case we minimize the functional
I d . n~z }22

1(z) = f [d - In Y an sin 2 -
d z  (37)

The solution is obtained as
.. 8 n7 n~z

2--2 sin n-2 sin 2 (38)
odd n 7

We could have also solved the above differential equation by blind application

of Galerkin's method. In that case, we solve the following equations [10]

< d- a sin nz - I sin m = 0 for mo (39)dznd n 2 2 odd

The various orders of approximation obtained by Galerkin's method are

presented in Figures 1 and 2. Observe that the convergence obtained using

Galerkin's method in this case is highly irregular. Observe neither

Lt IlxnIH 2 A ('2 dZ)2--..Ilxa 12 nor Lt JjAX 1 lY2
n)W n 0neatn-w n

monotonically. Yet an approximate solution may be obtained as the dimension

of the problem is increased. Note that the error in a one term Fourier

series solution is as large as that of a one hundred term Galerkin's method

solution.

It is important to point out that a Galerkin's method is not

applicable for this problem since the same expansion functions do not form

a complete set, both in the domain {D(A)} and in the range {R(A)} of the

operator A. Yet a numerically meaningful result may sometimes be obtained

if the order of the approximation is chosen as a large number. In summary,

if one formally applies Galerkin's method to a problem for which it is not

applicable, one may obtain an approximate solution if a large number of

expansion function is chosen. However convergence of the solutions in

some cases may be erratic as shown in the figures.
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Figure 2. Plot of I1 z n1 for Galerki 's method and the Fourier series
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